MASS TIMBER

WHAT IS MASS TIMBER?

Mass timber buildings utilize solid or engineered wood for the main structure, as opposed to simply serving as a design accent. It is not to be confused with "stick-built", "light-frame" or even "heavy-timber" wood construction, as mass timber buildings typically take on loads that are comparable to steel and concrete. There are five common types of mass timber:

- CLT: panels of 3, 5, or 7 layers oriented at right angles to one another and glued together, can be used for slabs, walls, roofs, and elevator cores
- NLT: panels created by fastening individual layers of lumber, into one structural element with nails. NLT is more economical than CLT, but can only handle one-way loads
- DLT: similar to NLT, except the laminations are achieved with wood dowels instead of nails or glue
- Glulam: composed of individual laminations, pressed and glued together and is used for beams or columns
- PSL: parallel strand lumber is manufactured by gluing strands of wood together under pressure and is also used for beams or columns

WHY BUILD WITH MASS TIMBER?

- Wood structures are much lighter than concrete, as a result their foundations can be up to 30% smaller.
- It works well for areas in which excavation is either difficult or prohibitively expensive.
- Structures are better at handling lateral loads, such as wind, earthquakes or explosions.
- Typical projects can be built 20% faster than steel or concrete, and with a much smaller construction crew.
- Steel and concrete pricing is typically 50/50 materials and labor, mass timber is more like 80/20.
- Off-site, prefabricated construction is a much safer working environment, and its efficiency results in fewer on-site truck deliveries, less noise, and a building that can be assembled using a power drill.
- People respond positively to timber surfaces and there's an aspect of biophilic resonance in the look and smell of timber products.

TYPICAL MEASUREMENTS

- Floor to floor heights: 12' 6" (comparable with steel)
- Optimal office column spacing: 20' x 24'
- Optimal office column size: 24" x 24"
- Premium Class A Office spacing: 30' x 30'
- Premium Class A Office column size: 36" x 36"

- Column sizing: 3.0" 3.6"
- Mechanical systems: VAV or DOAS
- Floor assembly: 8-10" 5 or 7 ply CLT slab with acoustical membrane interlayer and 2" concrete topping slab

BUILDING CODE, CONSTRUCTION AND HEIGHT CONSIDERATIONS

- "Heavy Timber" is another term for Type IV construction. This category was originally created for large, solidwood members that are rarely seen in modern-day construction. Though technically not exactly the same, this is the category used when describing mass timber projects to code authorities.
- The 2021 International Building Code (IBC) will soon allow mass timber buildings to be 18 stories.
- The current height limit for mass timber buildings submitting under Type IV is 85 feet.
- Most buildings have a concrete podium, with as many as 5 or 6 stories of mass timber structure above.

FIRE SAFETY

- Mass timber quickly forms a protective char layer in the event of a fire, and maintains its structural integrity much longer than unprotected steel in some fire tests.
- Because it is an engineered, layered product, mass timber burns predictably. Each 3/4" layer of wood provides an hour of fire rating.
 - » 1hr exposure = 1.8in/hr
 - » 2hrs exposure = 1.58in/hr¹

BEAM SECTION

Image by Forest Products Society

American Wood Council, 2015 National Design Spec for Wood Construction

PREMIUM CLASS A OFFICE SCHEME

TYPICAL FLOOR SLAB ASSEMBLY

- 2-4" concrete topping slab
- Acoustic interlayer
- 8-10" mass timber structural slab
- glulam or steel structural bay

MASS TIMBER FLOOR SYSTEM WOOD COLUMN (comparable to steel) CONCRETE TOPPING SLAB CLT SLAB 7 1/2" 3'-0'' 12'-6" GLULAM BEAMS Images by Structure Fusion **COMPOSITE FLOOR SYSTEM** (comparable to concrete) CONCRETE SLAB COMPOSITE STEEL BEAM REBAR 11'-6" NLT SLAB WOOD COLUMNS 4

MASS TIMBER SUPPLIERS & INSTALLERS

ALL PRODUCTS

SUPPLY & INSTALL

- Element5 (Toronto. Similar to Seagate with less experience)
- Seagate Structures (Vancouver. Installers will price and source from all N. American and European CLT & glulam suppliers)
- Structure Fusion (Montreal. Installers will price and source from all N. American and European CLT, NLT & glulam suppliers)

INSTALL ONLY

- BensonWood (New Haven)
- New Energy Works (New York)
- Swinerton (West Coast GC looking to expand)
- Spearhead (British Columbia)

CLT & GLULAM

SUPPLY ONLY

- Binderholz (Austria, not PRG-320 compliant)
- D.R. Johnson (Oregon)
- Hasslacher (Austria, Germany, not PRG-320 compliant)
- International Beam (Quebec, Ontario and Alabama)
- Martinsons (Sweden, not PRG-320 compliant)
- Moelven (Norway, UK, glulam only)
- Structurlam (British Columbia, Canada)
- Stora Enso (Finland, Sweden. Also produce LVL, not PRG-320 compliant)
- Züblin (Germany, UK, not PRG-320 compliant)

SUPPLY & INSTALL

- Katerra (Spokane, Phoenix)
- KLH (Austria, Portland-based sales team. Use 2 different installers supervised by KLH.)
- Nordic Structures (Quebec. Use their own installers and contract out as required, supervised by Nordic.)

CLT SUPPLY ONLY

SmartLam (Montana)

DLT

 Structurecraft (British Columbia. Structurecraft will only price DLT as the floor system for their projects.)

NLT

A number of installers are available but most do it once due to the significant construction costs in weather protection.

MASS PLYWOOD PANELS

Freres Timber (Oregon)

MASS TIMBER SOURCING

- Responsible forestry management in North America has resulted in more than 50 consecutive years of net forest growth exceeding annual forest removals¹.
- Wood is a truly renewable material and also removes carbon dioxide from the atmosphere. Steel and concrete, are finite resources and their extraction is emissions-heavy.
- Softwood is from coniferous trees, which typically remain evergreen throughout the year and are fast-growing and used for structural framing.
- Hardwood is from deciduous trees and is slow-growing, dense, and usually used for millwork and finishes.
- Softwoods such as Douglas fir and Spruce are common on the West Coast, Southern yellow pine is common on the East Coast.

1 Natural Resources Canada; USDA Forest Service

PRICING MASS TIMBER

Hickok Cole is working with Arup, DPR Construction, and Davis Construction to compare the direct cost premium of building a matter of right (MOR) mass timber office building vs baseline steel and concrete and has determined the difference to be roughly \$10/SF. The owner of one project predicts a \$5/month rent premium so the one-time additional cost for structure will quickly pay for itself.

office vertical expansion Gsf = 106,996SF	STEEL STRUCTURE	WOOD STRUCTURE					HYBRID WOOD/STEEL STRUCTURE	
		Vendor A	Vendor B	Vendor C	Vendor D	Vendor E	Vendor B	Vendor D
cost per square foot	\$44.59/sf	\$48.14/sf	\$50.02/sf	\$55.50/sf	\$56.13/sf	\$83.49/sf	\$57.06/sf	\$62.72/sf
delta vs steel	-	\$ 3.55 /sf	\$ 5.43 /sf	\$ 10.91 /sf	\$ 11.54 /sf	\$ 38.90 /sf	\$ 12.47 /sf	\$ 18.13 /sf

data from Davis Construction

FOR MORE INFORMATION CONTACT

Mark Ramirez Director of Corporate Office Associate Principal mramirez@hickokcole.com

Tom Corrado, AIA Senior Associate tcorrado@hickokcole.com

Guil Almedia, AIA, NCARB, LEED Green Assoc., Fitwell Amb. Senior Associate galmedia@hickokcole.com

